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1. Introduction

The purpose of this paper is to show that the generalized inverse (GI) form of the
equations of motion for discrete constrained mechanical systems is equivalent
to Lagrange’s equations of motion of the first kind. This equivalence leads
to a simple proof of Gauss’ principle of least constraint. It also shows that any
singular behavior in the integration of the GI form is also present in the classical
Lagrange form.

2. Lagrange’s equations of motion of the first kind
Lagrange’s equations of motion of the first kind take the form

(1)

Mi=Ma+ AT A,
Ax = b.
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An excellent discussion is available in Sommerfeld’s “Mechanics” (1952, pp.
66-69).

Recently (Kalaba & Udwadia 1992 and Udwadia & Kalaba 1992), it was
discovered that,

Y=a+ M ' AM b —- Aa). (2

which is the generalized inverse (GI) form of the equations of motion. In the
next section, we show the equivalence between Egs. (1) and (2).

3. Proof

To simplify matters, we first transform Eqs. (1) and (2) into the following
equivalent forms:

M1/2x — M1/2a+ M—I/ZAT/\
3
{AM—-l/ZMl/ZX_: b, ( )
and
M'Z%=M'"a+ (AM™)T (b— AM~'2M'q) . @)

Then, let y = M'/*%, g = M'/a, and C = AM~'/2. Since M~"/? is symmetric,
it is seen that CT = (AM‘I/Z)T = M~'2AT, Therefore, Egs. (3) and (4) are
reduced to

y=g+CT), (5)
{ Cy=0». (6)

and
y=g+C"(b-Cg. ()

In the following, we shall show that Eq. (7) is the existent and unique solution
to the set of linear Egs. (5)—(6).

We first prove the existence. That is, we would like to show that Eq. (7)
satisfies Egs. (5) and (6). Since the matrices C* and C? span the same column
space, it follows that there exists a vector A such that CTA = C*(b — Cg). This
implies that Eq. (5) holds. Substituting Eq. (7) into the right hand side of Eq.
(6) gives Cy =Cg +CCHb—Cg) =Cg +CC'h —~ Cg = CCTb. Since the
consistency of Eq. (6) requires that CCTb = b, the right hand side is then equal
to the left hand side. Hence, Eq. (6) holds. The existence of the solution (7) has
now been proved.

Next, we prove the uniqueness. That is, we would like to show that Eq. (7)
can be derived from Egs. (5) and (6). As is well known, the general solution to
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the consistent Eq. (6) is given by

y=Ch+(I-C"C)w, (8)

where w; is an arbitrary vector of the appropriate dimension. Combining Egs.
(5) and (8) provides

g+C'A=C"b+ I - CC)w,. (9)

Multiplying both sides of Eq. (9) by C on the left yields

Cg+CC'A=CCb, (10)

because C(I — CtC)w, = (C — CCTC)w; = (C — C)w; = 0. From Eg. (10),
we see that

cCc'A=CCb - Cg. (11)
The vector CT A that satisfies the consistent Eq. (11) is then given by

CT'A=CT(CCTh—Cg) + I —CTC)ws, (12)

or
C'A=C"(b—Cg)+ I —C Cyw, (13)
where w, is an arbitrary vector of the appropriate dimension. Multiplying both
sides of Eq. (13) by CT(CT)* on the left gives
CT(CTy €A = CT(CT)*CH(b—Cg)+ [CT(CT)T = ()T CHCl wy. (14)

Based on the properties of the generalized inverses, it holds that: CT(CTHY*tCT =
CT, CT(CTy*C* = C*, (CTC) = C*C, and (CT)* = (CH)T. Therefore, Eq.
(14) is simplified as
CTA=CT(b-Cg+[CT(CH —CClw,
= CHb—Cg)+[(CTO) —C*Clw,
=CT(b-Cg + [CTC — C*Clw,

(15)

=CT(b-Cg).

Substituting Eq. (15) into Eq. (5) then yields

y=g+C(b-Cg. (16)
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Moreover, from Eq. (15), we see that the Lagrange multiplier A can be written

as
A= (CTH*CHb-Cg) + 1 — (") 1w,

=(CH*CT(b-Cg)+ 1 - CC" |w.. (17)

where wj is an arbitrary vector of the appropriate dimension. This proof also

reveals that aithough the Lagrange multiplier A need not be unique for the set

of linear algebraic Egs. (1), the vector C' A, or equivalently. the vector ATAis
unique.

4. Alternative proof of Gauss’ principle of least constraint

Gauss’ principle states that the actual acceleration vector is the one that mini-
mizes the expression

G=(i-a) M- a. (13)
subject to

A¥ = b. (19

It is, of course, not possible to improve upon Gauss' simple and lucid proof
(Gauss, 1829), which involves no more than the principle of virtual work and
the law of cosines. But we see that if we put z = M'/2(¥ — a). then. Egs. (18)
and (19) are equivalent to

G=7z (20)
and

(AM™'?)z = b ~ Aa. (21)

Gauss’ principle turns out to be finding the shortest solution of the consistent
Eq- (21). The solution to it can be simply expressed by

7= (AM7V* (b - Aq). (22)

of

M2~ a) = (AM™%) ™ (b — Aa). (23)
From Eq. (23), it is then clear that ¥ = a + M~Y2(AM ~'/?)* (b — Aa). Since
this is the GI form, the correct expression for the constrained acceleration that

is equivalent to Lagrange’s equations of motion of the first kind, the proof of

Gauss’ principle is completed.
In the earlier paper (Kalaba & Udwadia 1992), the GI form of the equations
of motion has been proved to satisfy Gauss’ principle of least constraint.
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5. An application
To see the simplicity of the GI form of the equations of motion and its equiva-
lence to Lagrange’s equations of motion of the first kind and Gauss’ principle,
let us take a simple pendulum as an example.

Consider the trivial case in Figure 1 in which we want to determine the
equations of motion for a material point with mass m and coordinates x,, x;.

sz
f (x1, x2)
! *
8
\\i///';

Fig. 1. The motion of a pendulum

The GI form suggests that we do the following. First, identify the free motion

. . 0
acceleration and the mass matrix. In this case, they are azx1 = <—g*) and

m O

0
My, 12 = m~ /2 Y = m~/2I. Secondly, write out all the constraint
2x2 = 0 m-12 )= . ¥

M. = , where —g* is the acceleration due to gravity. Consequently,

equations; in this case, the only constraint is x7 + x3 = I*. Thirdly, get the linear

g, ng g . . X1 . . .
restrictions on the acceleration vector X, le = " 0 by two differentiations
X 2

of the holonomic constraint. This results in the equation

x1%1 4 xky = — (i + 3. (24)

In matrix form, Eq. (24) is

(5 ) (;;) = (2 + 1), (25)
which indicates that Ajx2 = (x1  x2) and by, = —(¥+43). Since AM~1/2 =
m~Y2 (x; x»), the generalized inverse of this vector is simply (AM “%)+ =

1 X1

D) x2>' Lastly, substitute all the required values into Eq. (2). We
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obtain

g —a+ M \PAMTYHT (b — Ag)

. 0 m=1/2 X1 2 12 0
e ) e ()

(0 g — (6 + )] ((x
= (_g*> + —————————‘—‘-(x% n x%) ) (26)

That is, the equations of motion for the pendulum are

©w) (0 [x28" — (i1 + 3] <x1>
(552> o (—g*) + (x? + x3) x2 ] D

On the other hand, Lagrange’s equations of motion of the first kind take the
form of the equation

m(%>=< °*>+A<“>, 8)
X2 —mg X2
plus the constraint equation
b= (29
Differentiating Eq. (29) twice with respect to ¢ produces
X%+ xk = — (G + %), (30)
From Eq. (28), we see that

¥ = Ax/m, (31)
and

Xo = —g* + Axp/m. (32)
Substituting Egs. (31) and (32) into Eq. (30) yields

A m — xog" + Axd/m = — (3 + 1), (33)
or
P T el s i5)m
x?+ x5 ) (34)
Substituting Eq. (34) into Egs. (31) and (32) then gives

g = 28— G+ D
Py (35)
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and

[r2g” — (4] + D) 1x
xp+x2 ’ (36)
respectively, which are identical with the results obtained from the GI form.
For comparison, let us now consider Gauss’ principle of least constraint. Based
on the discussions in Section 4, we know that the actual acceleration of the
pendulum is the one that minimizes the value of Eq. (18) subject to Eq. (19).
Specifically, Gauss’ principle poses an optimization problem which minimizes

Xz:-—g*_}_

G=G(k—-aMx—a
, .
= (% x2+g*>(’g m) (xz)f;g*)
= m[i? + (&2 + g9, (37

subject to

. . i)
X1X1 + XX = —(x% + X3). (38)
To transform this constrained optimization problem into an unc0n§tramed one,
we use the elimination method. Assuming x; 7 0, Eq. (38) then gives

%, = ~[(@} 4+ 1) + xi)/x. (39)
Substituting Eq. (39) into Eq. (37) provides
G = m{(P + & + 01/ + (B + 8707 (40)

The minimizing value of X, is then obtained by setting 3G /9%, =0, L.e.,

(x% + x%_ + )Cz)'éz)xz/x% +i+g =0 (41)
Therefore,
fp = AL G T “2)
T x4+ x5
Substituting Eq. (42) into Eq. (39) gives
L A5 L xR [x%g* + (&3 + B)x2
e Xy Xy x3 4+ x3
g =+ D) x @3)

7, 2
Xy + X3

It is easy to verify that Eqs. (43) and (42) are equivalent to Egs. (35) and (36),
respectively. Notice that these equations hold even if x; = 0.
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6. Conclusions

The occurrence of the generalized inverse of the matrix AM™'/% is a cause of
some consternation. But this should not be, because whatever difficulty is in-
volved in integrating the GI formula, the same difficulty is encountered in using
the equations of motion of the first kind. This is because they are identical, but
expressed in different forms. The explicit representation given by the GI formula
exposes, but does not cover up, any difficulties hidden in the employment of
Lagrange’s equations. The power of the GI formulation is hinted at in the sim-
ple proof of Gauss’ principle of least constraint. Moreover, the transformation
z = MY?(X% — a) suggests that in the original 3n dimensional space, distances
should be multiplied by the square roots of masses. Then Gauss’ principle as-
sumes the simplest form that we seek the shortest length solution of the system
(AM~V?)z = b — Aa. Future communications will deal with the role of the GI
formulation in Lagrange’s equations of motion of the second kind, in Hamilton-
ian mechanics, in the Gibbs-Appell approach and in that of Dirac. Questioning
the GI formula is no better than tilting with windmills.
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